ADP-ribosylation is a fundamental posttranslational modification where ADP-ribose is linked on to target proteins by ADP-ribose transferases and removed by the ADP-ribose hydrolases. Emerging data implicate ADP-ribosylation in maintaining the health of the nervous system; mutations in the genes that encode the enzymes that reverse ADP- ribosylation cause neurodegenerative disease in humans and pharmacological inhibition of the ADP-ribose transferases is therapeutically beneficial in various cellular and animal models of human neurodegenerative diseases such as stroke, Parkinson’s disease and motor neuron disease (reviewed in 1). This suggests that ADP-ribosylation regulates key proteins involved in brain aging, however what these proteins are and how they are regulated by ADP-ribosylation is unknown. To elucidate the proteins and underlying mechanisms that regulate brain aging, the student will use an interdisciplinary approach that combines genetics of the fruit fly with molecular and cellular approaches to determine the role of nuclear ADP-ribosylation in the aging and diseased nervous system of the fly (AIM1) and in human cells (AIM2).
At the end of this project the student will have identified novel aspects of ADP-ribosylation in the normal and diseased nervous system.